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A PROOF OF EXISTENCE OF A UNIQUE SOLUTION TO THE PROBLEM OF

ADAPTIVE BEAMFORMING SUBJECT TO LINEAR CONSTRAINTS

by

M. F. C. Woollett

I 'V SUMMARY
A description of adaptive beamforming in the presence of linear constraints

is given. It is proved that if the number of constraints does not exceed a

stated maximum then the adaptive process determines one unique beam pattern.

The proof is first written out explicitly using elementary algebra, and second

in matrix form. The matrix form has the advantage of compactness and makes pos-

sible the writing of a simple formula for the weights which themselves define

the beam pattern.

Copyright

Controller HMSO London
1980

This Memorandw expresses the opinions of the author and does not necessarily
represent the official view of the Royal Aircraft Establishment.



2

LIST OF CONTENTS

Page

I INTRODUCTION 3

2 BASIC FORMULAE 3

3 THE PRINCIPLE OF ADAPTIVE BEAMFORHING 5

4 EXTENSION TO MULTIPLE CONSTRAINTS AND PROOF THAT ABF HAS A
UNIQUE SOLUTION 6

5 MATRIX FORMULATION OF THE PROOF 10

6 CONCLUDING REMARKS AND CHOICE OF CONSTRAINTS 13

Acknowledgments 15

Report documentation page inside back cover

Accession For
NTIS GRA&I
DTIC TAB
Unannounced

Justification

------------

Distribution/ .. .

Availability CodeS
~Avail andI/or

Dist special

z

i:.I '



3

I INTRODUCTION

Adaptive beamforming (ABF) is a method of signal processing, explained in

section 3 below. It is receiving considerable attention at the moment with a

view to its possible applications to various types of sensor arrays and especially

passive directional sonar. Over recent years a quite voluminous literature has

accumulated concentrated upon the numerical techniques needed to render the pro-

cess practicable. However, none of the papers seen by this writer has aadressed

the question of the relationship between the constraints and the uniqueness of

the solution, or of the number of constraints to which it may be made subject.

It appears to be worthwhile to make good any such gap, and this Memorandum does

so, for the case of linear constraints, by the use of elementary algebra only.

The proof is written out explicitly in section 4, followed by its briefer trans-

lation into matrix language in section 5 where the formal solution is also given.

Before doing this the basic formulae of the subject will be derived and an

explanation of ABF provided.

2 BASIC FORMULAE

Consider an array of n sensors, the complex output (typically the Fourier

transform of the time series derived by periodically sampling an actual signal)

of the kth sensor being xk , k = I, 2, ..., n. In the associated signal

processing the complex conjugates of the xk , denoted by x* , are multiplied by

complex weights wk appropriate to a particular 'look' direction (or beam), and

suned to give the output

n

y Z V xw k  (I)
kk

k-I

corresponding to which the output power in the beam which has been formed is

n n

IYI2  -yy* X .Z wk x w

k-I 1-I

n

- XkxtwkwL 1 (2)

k, tI

What the processor actually delivers as an output for display is an average

of the power over some period of time. Such averages are statistical expectations,
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denoted for convenience by E ,so that

E( 1y12) - E( x x)wkv* (3)

where E(x~t - JxtP( *'X )d *dxt 4

P(Xx being the probability density function, and the integrations being

taken over all values of xkx for all directions. Then, taking the complex

conjugate of (4),

[Exx)] x Ixxp(xk~xt)dxkdxt (5)

where p ,which is just a real number between 0 and 1, remains unaltered during

conjugation. But the probability distributions of x.k and * must be

identical (if Xkis specified so is its conjugate %~ , and conversely),

ie P(x*,x)- p(xkx*) , which substituted into (5) gives

[E xfft)]* (x~* o*

which by (4)

-E(24kx*) - E(x~xk)

Hence, writing for brevity ek E( xx) it follows that

e -e* (6)Lkc kt

and substitution into (3) gives for the expected power

1(y2) -Ca t(7)

E~ly
tc k1.1

%C
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3 THE PRINCIPLE OF ADAPTIVE BEAMFORMING

As usually formulated the objective of ABF is that of minimising the

power given by the expression (7) above while maintaining unit response in one

specified direction. This last requirement may be stated by means of a linear

relationship between the wk as can be seen by the following simple example:-

suppose that, for an incident wave of given direction and of frequency f , a

time delay tk occurs between the first and kth sensors for corresponding points

in the wave front, then apart from a proportionality factor (defining the ampli-

tude of the wave and its phase at the first sensor) xk W e tk. Substitution

of this in (I) shows that, for unit response in the given direction, the wk

must satisfy

e wk = I (8)

k-1

which is the linear relationship referred to. For conventional beamforming (CBF)

wk - T(k)e 2iftk where T(k) , called the taper function, satisfies

T(k) - I consistently with (8).

k-I

The freedom of choice in T(k) makes possible the variety of beam

patterns available to CBF. There are serious limitations however. Thus, taking

for example the case of a linear array, if diffraction secondaries (repeats

of the main beam) are to be excluded from look directions within ±900 of broad-

side the hydrophone spacing must be less than a wavelength. Hence, for a res-

tricted number of hydrophones (and in practice such restriction is clearly

unavoidable), the array length will be correspondingly limited. Under these

circumstances any attempt to improve sensitivity by narrowing the main beam

results in increased side lobes - and conversely. In practice there always will

be side lobes, and the further the main beam is tilted away from broadside the

wider it is, and the larger some of the side lobes become. If then, while an

attempt were being made to detect a signal of interest in a certain direction

by steering the main beam there, a sufficiently powerful noise was being picked

up by such a side lobe, the whole operation of the array could be confused. ABF

- deals with this problem by fixing the response of the array in the direction of

interest, using a linear constraint on the weighting factors vk (as illustrated

by (8) above), and then exploiting the remaining available variability of the wk
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in re-shaping the beam pattern so as to minimize the total energy received from

all directions.

4 EXTENSION TO MULTIPLE CONSTRAINTS AND PROOF THAT ABF HAS A UNIQUE SOLUTION

A generalization of the above ABF method to cover multiple constraints will

now be considered. It will be proved that any number m n - I (where n is

the number of independent sensors) of arbitrary independent linear constraints

may be imposed on the weights wk , k - 1, 2, ..., n, subject to which there

exists a unique set of values of the wk (given explicitly by formula (28) in

section 5) for which the power given by expression (7) attains a minimum.

Let there be m postulated constraints which define the array response

for m specified directions such that

n

CrJWj r (9)

where r - I, 2, ..., m; qr being the prescribed response in the rth direction,

the direction being determined by the coefficient c rj . So far as the present

argument is concerned the ci and q r are quite arbitrary, and do not need to

have the merely typical physical interpretations just given (vide section 6).

Clearly m < n - I since there are only n available wjs in (9), and if

m - n they would be completely determined by equations (9) alone leaving no

variability for attaining a minimum of the expression (7). In practice m

would probably be much smaller than n to provide as much freedom as possible

for variation of the w. in making the minimum of E(1y12) as small as possible.

The complex conjugates of equations (9), namely

L c crw! - (r 1 ,2,...,m n -1) (10)
* i-I

may also be written.

The m constraint equations (9) leave n - m of the w. free to be varied
2 J

in search of minima of E(ly) . This observation suggests that a way to find

a minimum would be to use the equations (9) to eliminate m of the w. from

the formula (7) leaving E(Iy 2) expressed in terms of the remaining n - m4 .' -
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variables. If each of these remaining w. s were then arbitrarily varied and
J I 2)

the consequential first-order variations in E(IyI set to zero there would

result n - m linear equations to determine the values of the n - m w. s.j

These determined values when substituted into equations (9) would provide m

equations to give the values of the m w. s which were originally eliminated.

This discussion incidentally makes an argument for the existence of a unique set

of w. giving a stationary value (not necessarily a maximum or a minimum, the
J

existence of which calls for further enquiry) of E(lyl"). When translated into

the actual algebraic steps implied however the formulation becomes unattractively

complicated. Also, in practice, no guidance could be given as to which of the

w. should first be eliminated, and if an unfortunate choice were made then badly

conditioned equations might appear for the remaining w. leading to numericalJ
problems.

These difficulties may be circumvented and complete symmetry maintained

throughout by treating all the w. on an equal footing from the start. Thenj

setting to zero the first-order changes in E( y12 ) consequent upon arbitrary

variations in all the w. would give n equations, while the constraints (9)

give m equations, thus making in all m + n equations between the n variables

w.. To preserve the required freedom of action, m extra variables, writtenJ

X (r = 1,2,...,m) are introduced and the following n equations written
r

n m

e..jw. Z c rjX = 0 (11)

i1l r=1

for j = 1, 2, ... , n; with which, by taking the complex conjugates, the

n equations

n m

e - cr.Xr  = 0 (12)
Si1 r r

for j - I, 2, ..., n are associated.

The m + n equations (9) and (11) together determine a unique set of
en values for the wi(i - 1,2,...,n) and the Xr (r - 1,2,...,m): the actual

Z formulae for these unknowns, (27) and (28), are derived in section 5 where it

is seen that the values of w. do not depend in any way upon the X which dis-
I rappear from the argument as soon as they have served their purpose of maintaining
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its symmetry. Henceforth in this section the w. will be assumed to stand for

this particular set of values which it will be proved give a minimum for E(1yl2 ).

To this end vary these wi  by arbitrary amounts hi , subject only to the

constraints (9), to become wi + hi(i - 1,2,...,n). Let E(JYJ2)w stand for

the value of E(Iyj2) (defined by equation (7)) when expressed in terms of the
2

wi , and E(yI )w+h its value when the wi  are replaced by wi + h. Then

the variation in E( yt2) is, by use of (7)

6E( y 2) E(IY1 2)w+h - E( y]2)w

" el(wh + Wh + e 2 (w h + Wh + +.. e (wh* + w*h

+e21(w h * + w*h e(w2h* h ... + e (w h* + wn*h

212 1 2 2222 2 2 2n 2 n n 2

nei(wnh *+w*h) + e (w h * *h + e( *+ vWh)In I In n n 2 2n nn n n n n

n

+ e..h.h. (13)
E Ij IJ Ij

iJ=l

The right hand side of (13) expresses SE( y 2) as a sum of the first

degree terms in h. and h. written in extenso, and of the second degree terms1 1

h.h. under the summation sign. Concentrating to begin with upon the first

degree terms, and collecting together separately all those in h.(i = 1,2,...,n)

and those in h (i 1 ],2,...,n) they amount to

( eiw)h i e wh + + (in eiw h*

which by use of (6) is equal to

%zn
L I
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( e ew)h* + ( e e.w)1 + + ( e ew h
+( eIw)ij ( ie2w ) 2  inwj

By substitution from (11) and (12) the last expression can be written

( C c ))h*' +(m Ci')h* + +. m(h *

( l c IA)h Z( cr2Ar 2 E ( cnX? n

r=1 r r=

+ c. .h + A c*Xh~ + .+ YC* h
j=I I j 2=In )

n n n

I + Z2 2 mCjh (14

Both the w.i and the w.i + h.i are required to satisfy the constraints (9).

Substitution then of each of these two sets of variables into each of the m

equations (9) followed by subtraction leaves the m results

c*.h. -0
Srj j

z for r 1 , 2, .. ,m .Similarly the w!~ and w! + h' satisfy (10), and

accordingly
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n

j=1

also for r 1, 2, ... , m . Thus, returning to the expression (14) it is seen

that the coefficients of all the X and Xr are zero, and hence the expressionr r

vanishes identically - there is therefore no first order variation in 6E(ly1 2)

and E( y 2 ) has a stationary value at the unique set of values of

w.(i = 1,2,..., n) determined by (9) and (II).1

The only remaining contribution to the variation in E(IyI 2) caused by

the h. and h is the last term written on the right hand side of (13). This
1 1 

Y 2is an exact replica of the expression (7) for E( with the WkWk replaced

by hi, h . But lyl by its very contrivance is inherently and inevitablyJ2

positive, and so also therefore must be its expectation E(JyI 2) . Thus the

second order variation in the power is positive whatever the values of h. (and1
their accompanying h) so long as the weights w. satisfy the equations (II)

1 1

and both the w. and their varied values w. + h. satisfy the constraints (9).

In other words a unique minimum exists for the expected power for the chosen

look direction, and this corresponds to a unique set of weights w. with its1

associated beam pattern.

5 MATRIX FORMULATION OF THE PROOF

This section is devoted to a rendering of the rather lengthy exercise of

section 4 into the much shorter matrix version. It incidentally makes possible

the writing of a deceptively compact formula (28), for the optimum values of the

weights sought by the ABF process.

As before the basic formulae derived in section 2 provide the starting

point. The n complex outputs xk(k = 1,2,...,n) are written as a column

vector x , and the n complex weights wk similarly as w . The letter T

standing above and to the right of a matrix or vector denotes its complex

transpose, ie its transpose with its elements replaced by their complex conjugates,

also known as the Hermitian transpose. Thus the row vector of elements x* is
kT T

written x , so that equation (I) appears at y = x w , and the expression (2)

for the power as
z

Iy 12 T T-
2 w xx w .(15)

7. S
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T T
The product xx of the column vector x with the row vector x appear-

ing in (15) is a square n x n matrix of elements XkXz* Hence formula (3)

for the expectation of the power may be written

E(jy12) = wT E(xxT)w

= wTRw , (16)

where R is a square matrix of n rows and n columns of elements E(x x *) =e

kiZ k
according to the definition of ekk given toward the end of section 2. R is

called the covariance matrix of the sensor outputs xk

From (6) it can be seen at once that

T
R =R , (17)

which is the defining property of a Hermitian matrix, and is essential to the

argument.

The set of m constraints (9) takes the form

CT =L4 (18)

where C = [c. ](j = 1,2 ,-..,n r = 1,2,...,m) is a matrix of n rows and mjr , . , .

columns, and q = (q r) is a column vector of the m stipulated responses.

The matrix equation

Rw-CA = 0 , (19)

involving the extra column vector X = r of unknowns X r(r = 1,2,... ,m) as

well as that of the wk , is then written. Equations (18) and (19) are a pair

of simultaneous equations in the vectors w and X which determine both of

them, as will be demonstrated shortly. Before doing this, however, it will be

shown that the w thus determined, the optimum w0  say, makes the E(jyj 2 ) in

(16) a minimum.

To this end let w0 be altered by a column vector h - (hk)(k = 1,2,...,n)

LM which is arbitrary apart from w + h needing to satisfy the constraint (18).
-0

Then the consequential change in E(IyI2), found by substituting do + h and

w 0 successively into the right hand side of (16) and subtracting, is
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T T

6E (y[2)= (w + h) TR(w + h) - w TR

hRw + wRh +h TRh (20)
- 0 -40- -

But since w satisfies (19) then

RyO = CX (21)

with its Hermitian transpose

T T T
wR = c (22)

Tremembering R = R from (17).

Substituting (21) into the first term and (22) into the second term on the right

of (20) gives

6E(IyI 2 ) = h Cx + X C h + h Rh (23)

Again, both w0 + h and w0 satisfy the constraint (18), ie

cr(w0 + h) = cTw + cTGh

and
T q(24)

whence by subtraction

C Th 0 (25)

of which the Hermitian transpose

Thc = 0 (26)

must also of course be true.

Substitution from (25) and (26) into respectively the second and first terms

on the right of (23) then leaves z

6E(jyj) - h TRh
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t2

only, which is just the expression on the right of (16) for E(IyI ) with w

replaced by h . But E(l) is positive whatever values its variables may

take. Thus 6E( y 2 ) is positive and so, for w equal to the w0 determined

by (21) and (24), Ely1 2 ) is a minimum.

For completeness the actual solutions for w0 and X will now be derived.

Substitution for w0 from (21) into (24),or from (19) into (18) gives

C TRI CA = q

whence

q
= T-1 (27)

and this substituted into (21) gives

14 R- (28)CTR - C

The formula last written is the explicit solution of the array processing
-1

problem using ABF . It is seen, however, to require the evaluation of R ,

the inverse of the covariance matrix whose order equals the number n of sensors

in the array. Such inversions for large n are a notoriously difficult problem.

Because of this, much of the effort in support of ABF has been aimed toward
2methods of seeking the minimum of E(lyl ) otherwise by finding the most rapid

descent path across the surface of the function E(ly12) in w space. This

paper demonstrates that for a given set of covariances and defined constraints,

such paths all lead to a unique minimum.

6 CONCLUDING REMARKS AND CHOICE OF CONSTRAINTS

This Memorandum gives a rigorous proof of the existence of a unique solu-

tion to the minimisation problem of ABF in the particular case of linear con-

straints but, also for this particular case, generalized as far as is possible

to cover the maximum number of such constraints. It gives a formula, (28), for

the solution in terms of the noise field as expressed by the covariance matrix R

and in terms of the constraints through their directions represented by the

matrix C and the vector of their magnitudes q

Ln As pointed out in the remarks following equation (9) in section 4, these

- represent but one possible choice of meanings for C and q , and the mathemati-

cal argument is unaffected whatever physical interpretation they are given. Some

examples of other meanings are discussed below.
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The practical significance of the theorem is that whatever method be used

to seek the minimum it can lead only to one unique solution. Thus, for example,

if a procedure of successive approximations were adopted there would be no danger

of convergence toward some spurious local minimum, as there exists none but just

the one true minimum to be sought.

On the other hand, the analysis of this paper has nothing to say about the

beamshape produced by the particular ABF process studied. It is consideration

of this, however, which can strongly influence the choice of constraints in the

first place. After all, the whole purpose of ABF is to produce some sort of
'best possible' beam pattern. If for example the signal of interest should lie

close to, but not exactly along, the direction demanded by a constraint, then

the ABF process may inherently attempt to reject the genuine signal while con-

centrating upon the constrained direction, forming a very narrow beam in the

process. One way to avoid this hazard would be by requiring the average response

or responses over an assigned sector or sectors to take prescribed values, and

this, leading as it does to linear constraints, is covered by the present work.

The application of this approach is the subject of a study by G.J. Lawson of

Radio and Navigation Department, RAE to be published in due course.

A quite different approach depends upon the fact that very narrow beams

are generally associated with the occurrence of very large positive and negative

values of the weights. The ABF process could then be prevented from generating

such beams if a constraint of the form limiting the sum of the squares of the

weights to a reasonable value were imposed. Such quadratic constraints have been

studied by J. Hudson of Loughborough University of Technology - they fall outside

the scope of this Memorandum.

If yet another method of avoiding over-narrow beams were used, namely

requiring that the rate of change of response with look direction be limited, then

although the constraints are still linear they then take the form of inequalities.

Again the proof given above does not apply. The same would be true if, in order

to maintain a prescribed beam width, constraints were imposed which require the

responses to exceed a defined value in certain directions close to the look

* direction.

In short, this paper establishes the basic uniqueness theorem in the most

general form for ABF with linear constraints, but makes no contribution to

the theory when the constraints are quadratic or are expressed as inequalities.



15

Acknowledgments

The author thanks G.J. Lawson, T. Hooper and Dr M.J. Buckingham of

Radio and Navigation Department, RAE for reading through the proofs given in

this paper and for encouraging its publication, also Dr G.J. Burrell for carrying

out a most rigorous vetting.

LM

z II
I



Ilk


